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Graphs	
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Graphs	

Complex networks
•  Technological Networks
•  Social Networks
•  Infrastructural  Networks
•  Biological Networks
•  ...
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Graphs	
Analytic Tasks

•  Node classification
•  Link prediction
•  Community detection
•  Network similarity
•  ...
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A B

Node/Subgraph à A point in low dimensional vector space

Problem 
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Encoder-Decoder	Perspective	
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Shallow Embedding

Limitations:
1.  No shared Parameters à O(|V|) parameters
2. Transductive
3. Not leveraging nodes’ features 9	



Neighborhood Encoders
Key	idea:	Generate	node	embeddings	based	
on	local	neighborhoods.		

•  Intuition:	Nodes	aggregate	information	from	
their	neighbours	using	neural	networks	
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1) Define a neighborhood 
aggregation function.

zA

2) Define a loss function on the 
embeddings, L(zu)

Neighborhood Encoders
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Neighborhood Encoders	

3) Train on a set of nodes, i.e., a 
batch of compute graphs
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Neighborhood Encoders

4) Generate embeddings for nodes 
as needed

Even for nodes we never 
trained on!!!!

13	



Neighborhood Aggregation

same matrix for self and neighbor 
embeddings per-neighbor normalization
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Basic Neighborhood Aggregation

GCN Neighborhood Aggregation
VS.
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GraphSAGE
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Any differentiable function that maps 
set of vectors to a single vector.
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•  Simple	neighborhood	aggregation:	

•  GraphSAGE:	

GraphSAGE	Differences	

generalized aggregation

concatenate self embedding and 
neighbor embedding 
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Neighborhood sampling 16	



GraphSAGE Functions

•  Mean:

•  Pool

•  LSTM
	

Loss function
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  GraphSAGE 
 

An inductive encoder 
Parameter sharing

Integrating the graph structure and node feature
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Discussion

•  GraphSAGE  is  optimized  for  two  or  three 
layers, what if we want  to go deeper? What are 
the challenges?

•  How  can  we  extend  GraphSAge  to  support 
multi-layer networks?

•  GraphSAGE generates embedding for nodes, 
what about subgraph embedding?
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