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Complex networks

Technological Networks

Social Networks
Infrastructural Networks

Biological Networks




Analytic Tasks

Node classification

Link prediction

Community detection

Network similarity




Machine Learning Life Cycle
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Encoder-Decoder Perspective

Encoder Function ) Decoder Function
ENC : V — R¢ : DEC : R? x R? - Rt

Similarity Function
DEC(ENC(v;), ENC(v;)) = DEC(2,2,) = sg(vi,v;)

Loss Function

ﬁ — Z K(DEC(Zi,Z]’),SQ(/Ui)/Uj))
(U’ivvj)ED



Shallow Embedding

ENC(v;) = Zv;
Type Method Decoder  Similarity measure Loss function (¢)
Laplacian Eigenmaps |z; — z;]|3 general DEC(z;,2;) - sg(vi,v;)

Matrix Graph Factorization z; 7; A IDEC(24,2;) — sg(vi,v;)]|3
factorization GraRep 7, Aij,AZ, .. AY.  |DEC(z,2;) — sg(vi,v))ll3
HOPE z; 7; general IDEC(24,2;) — sg(vi, v;) |3

Z-I-Z q
DeepWalk e—JTzk pg(vjlvi) —sg(vi,vj) log(DEC(z4,2;))

Random walk Z’“E"Te '
node2vec eZZ—ZJT pg(vj|v;) (biased)  —sg(vi, v;) log(DEC(z;,2;))

Limitations:

No shared Parameters = O(|V|) parameters

2. Transductive

3. Not leveraging nodes’ features



Neighborhood Encoders

Key idea: Generate node embeddings based
on local neighborhoods.

TARGET NODE

® - AGGREGATE

INPUT GRAPH N | _
* |Intuition: Nodes aggregate information from

their neighbours using neural networks
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Neighborhood Encoders

1) Define a neighborhood
aggregation function.
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2) Define a loss function on the
embeddings, £(z,)
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Neighborhood Encoders

3) Train on a set of nodes, i.e., a
batch of compute graphs
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Neighborhood Encoders

4) Generate embeddings for nodes
as heeded

Even for nodes we never
trained on!!l!
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Neighborhood Aggregation

Basic Neighborhood Aggregation

hk—l

h" =0 | W, “ __ + Biht!

%) N ()]
VS.

GCN Neighborhood Aggregation

hk—l
h =0 | W, Z -

) ventmue VIN(@W)|IN(v)
//N<> \

same matrix for self and neighbor
embeddings

per-neighbor normalization
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TARGET NODE

l

INPUT GRAPH

GraphSAGE
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GraphSAGE Differences

* Simple neighborhood aggregation:

hk—l
hy =0 | W L — + Bihy ™!
7| We 2 N()

concatenate selfembedding and

* GraphSAGE: neighbor embedding

/ \

h* = o ([W}, -[aca ({bE 1, Vu € N(v)}) , Bihi 1))

lized ti \
generaiizedaggregation Neighborhood sampling ¢



GraphSAGE Functions

hk—l
e Mean: AGG = E =
ueN (v) ‘N(U)’

* Pool Acc =~ ({Qh} " Vue N(v)})

* LSTM acc = LSTM ([hi !, Vu € n(N(v))])

Loss function

JQ(ZU):“lOg( (Z Zv)) Q: ]EvnNP log (O-(—Z]L-Zvn)l



GraphSAGE

An inductive encoder
Parameter sharing
Integrating the graph structure and node feature
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Discussion

* GraphSAGE is optimized for two or three
layers, what if we want to go deeper? What are

the challenges?

* How can we extend GraphSAge to support
multi-layer networks?

e GraphSAGE generates embedding for nodes,
what about subgraph embedding?



