Inductive Representation Learning on Large Graphs

By William Hamilton, Rex Ying, and Jure Leskovec – NIPS'17

Presented by **Aida Sheshbolouki** CS-848 Winter'19

Machine Learning Life Cycle

Machine Learning Life Cycle

Node/Subgraph -> A point in low dimensional vector space

Problem

Encoder-Decoder Perspective

Encoder Function

 $\text{ENC}: \mathcal{V} \to \mathbb{R}^d$

Decoder Function

 $\mathrm{DEC}:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}^+$

Similarity Function

$$DEC(ENC(v_i), ENC(v_j)) = DEC(\mathbf{z}_i, \mathbf{z}_j) \approx s_{\mathcal{G}}(v_i, v_j)$$

Loss Function

$$\mathcal{L} = \sum_{(v_i, v_j) \in \mathcal{D}} \ell\left(\text{DEC}(\mathbf{z}_i, \mathbf{z}_j), s_{\mathcal{G}}(v_i, v_j)\right)$$

Shallow Embedding

$$ENC(v_i) = \mathbf{Z}\mathbf{v}_i$$

Type	Method	Decoder	Similarity measure	Loss function (ℓ)
Matrix factorization	Laplacian Eigenmaps Graph Factorization GraRep HOPE	$egin{aligned} \ \mathbf{z}_i - \mathbf{z}_j\ _2^2 \ \mathbf{z}_i^{ op} \mathbf{z}_j \ \mathbf{z}_i^{ op} \mathbf{z}_j \ \mathbf{z}_i^{ op} \mathbf{z}_j \end{aligned}$	general $\mathbf{A}_{i,j}$ $\mathbf{A}_{i,j}, \mathbf{A}_{i,j}^2,, \mathbf{A}_{i,j}^k$ general	$\begin{aligned} & \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) \cdot s_{\mathcal{G}}(v_i, v_j) \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \end{aligned}$
Random walk	DeepWalk	$\frac{e^{\mathbf{z}_{i}^{T}\mathbf{z}_{j}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{i}^{T}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v_j v_i)$	$-s_{\mathcal{G}}(v_i, v_j)\log(ext{DEC}(\mathbf{z}_i, \mathbf{z}_j))$
	node2vec	$\frac{e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{j}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v_j v_i)$ (biased)	$-s_{\mathcal{G}}(v_i, v_j) \log(\text{DEC}(\mathbf{z}_i, \mathbf{z}_j))$

Limitations:

- 1. No shared Parameters \rightarrow O(|V|) parameters
- 2. Transductive
- 3. Not leveraging nodes' features

Key idea: Generate node embeddings based on local neighborhoods.

Intuition: Nodes aggregate information from their neighbours using neural networks

1) Define a neighborhood aggregation function.

2) Define a loss function on the embeddings, $\mathcal{L}(z_u)$

3) Train on a set of nodes, i.e., a batch of compute graphs

Neighborhood Aggregation

Basic Neighborhood Aggregation

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$
vs.

GCN Neighborhood Aggregation

embeddings

$$\mathbf{h}_v^k = \sigma \left(\mathbf{W}_k \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_u^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$
 same matrix for self and neighbor

per-neighbor normalization

GraphSAGE

GraphSAGE Differences

Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

GraphSAGE:

concatenate self embedding and neighbor embedding

$$\mathbf{h}_v^k = \sigma\left(\left[\mathbf{W}_k \cdot \overline{\operatorname{AGG}\left(\{\mathbf{h}_u^{k-1}, \forall u \in N(v)\}\right)}, \mathbf{B}_k \mathbf{h}_v^{k-1}\right]\right)$$
 generalized aggregation Neighborhood sampling 16

GraphSAGE Functions

• Mean:
$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

• Pool
$$AGG = \gamma \left(\left\{ \mathbf{Q} \mathbf{h}_u^{k-1}, \forall u \in N(v) \right\} \right)$$

• LSTM AGG = LSTM $([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$

Loss function

$$J_{\mathcal{G}}(\mathbf{z}_u) = -\log\left(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)\right) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)}\log\left(\sigma(-\mathbf{z}_u^{\top}\mathbf{z}_{v_n})\right)$$

GraphSAGE

An inductive encoder Parameter sharing Integrating the graph structure and node feature

References

 Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

• Hamilton, William L., Rex Ying, and Jure Leskovec. "Representation learning on graphs: Methods and applications." arXiv preprint arXiv:1709.05584 (2017).

Discussion

 GraphSAGE is optimized for two or three layers, what if we want to go deeper? What are the challenges?

 How can we extend GraphSAge to support multi-layer networks?

 GraphSAGE generates embedding for nodes, what about subgraph embedding?